Texture representations using subspace embeddings
نویسندگان
چکیده
In this paper, we propose a texture representation framework to map local texture patches into a low-dimensional texture subspace. In natural texture images, textons are entangled with multiple factors, such as rotation, scaling, viewpoint variation, illumination change, and non-rigid surface deformation. Mapping local texture patches into a low-dimensional subspace can alleviate or eliminate these undesired variation factors resulting from both geometric and photometric transformations. We observe that texture representations based on subspace embeddings have strong resistance to image deformations, meanwhile, are more distinctive and more compact than traditional representations. We investigate both linear and non-linear embedding methods including Principle Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Locality Preserving Projections (LPP) to compute the essential texture subspace. The experiments in the context of texture classification on benchmark datasets demonstrate that the proposed subspace embedding representations achieve the state-of-the-art results while with much fewer feature dimensions.
منابع مشابه
Ultradense Word Embeddings by Orthogonal Transformation
Embeddings are generic representations that are useful for many NLP tasks. In this paper, we introduce DENSIFIER, a method that learns an orthogonal transformation of the embedding space that focuses the information relevant for a task in an ultradense subspace of a dimensionality that is smaller by a factor of 100 than the original space. We show that ultradense embeddings generated by DENSIFI...
متن کاملLearning Word Representations from Scarce and Noisy Data with Embedding Subspaces
We investigate a technique to adapt unsupervised word embeddings to specific applications, when only small and noisy labeled datasets are available. Current methods use pre-trained embeddings to initialize model parameters, and then use the labeled data to tailor them for the intended task. However, this approach is prone to overfitting when the training is performed with scarce and noisy data....
متن کاملHierarchical Computation of Pl Harmonic Embeddings
With the advent of laser scanning systems, extremely large colored meshes are becoming commonplace, and with them the need to efficiently store, transmit, render and edit them. One approach, which has the additional feature of supporting texture mapping is to construct multiresolution representations of meshes. This approach was developed by Lounsbery et al. [10, 11], Schröder and Sweldens [13]...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملSubspace Embeddings and ℓp-Regression Using Exponential Random Variables
Oblivious low-distortion subspace embeddings are a crucial building block for numerical linear algebra problems. We show for any real p, 1 ≤ p <∞, given a matrix M ∈ Rn×d with n d, with constant probability we can choose a matrix Π with max(1, n1−2/p)poly(d) rows and n columns so that simultaneously for all x ∈ R, ‖Mx‖p ≤ ‖ΠMx‖∞ ≤ poly(d)‖Mx‖p. Importantly, ΠM can be computed in the optimal O(n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern recognition letters
دوره 34 10 شماره
صفحات -
تاریخ انتشار 2013